• <tr id='XVtZ1X'><strong id='XVtZ1X'></strong><small id='XVtZ1X'></small><button id='XVtZ1X'></button><li id='XVtZ1X'><noscript id='XVtZ1X'><big id='XVtZ1X'></big><dt id='XVtZ1X'></dt></noscript></li></tr><ol id='XVtZ1X'><option id='XVtZ1X'><table id='XVtZ1X'><blockquote id='XVtZ1X'><tbody id='XVtZ1X'></tbody></blockquote></table></option></ol><u id='XVtZ1X'></u><kbd id='XVtZ1X'><kbd id='XVtZ1X'></kbd></kbd>

    <code id='XVtZ1X'><strong id='XVtZ1X'></strong></code>

    <fieldset id='XVtZ1X'></fieldset>
          <span id='XVtZ1X'></span>

              <ins id='XVtZ1X'></ins>
              <acronym id='XVtZ1X'><em id='XVtZ1X'></em><td id='XVtZ1X'><div id='XVtZ1X'></div></td></acronym><address id='XVtZ1X'><big id='XVtZ1X'><big id='XVtZ1X'></big><legend id='XVtZ1X'></legend></big></address>

              <i id='XVtZ1X'><div id='XVtZ1X'><ins id='XVtZ1X'></ins></div></i>
              <i id='XVtZ1X'></i>
            1. <dl id='XVtZ1X'></dl>
              1. <blockquote id='XVtZ1X'><q id='XVtZ1X'><noscript id='XVtZ1X'></noscript><dt id='XVtZ1X'></dt></q></blockquote><noframes id='XVtZ1X'><i id='XVtZ1X'></i>
                您所在的位置: 首頁 / 學術空間

                Wave Solutions of KdV-Burgers-type Equations

                講座編號:jz-yjsb-2021-y032

                講座題目:Wave Solutions of KdV-Burgers-type Equations

                主 講 人:Zhaosheng Feng 教授 美國德克薩斯大學RGV分校

                講座時間:20210712(星期下午16:00

                講座地點:騰訊會議,會議ID560 977 321

                參加對象:數學與統計學院全體教師及研究生

                主辦單位:數學與統計學院、研究生院

                主講人簡介:

                馮兆生,美國德克薩斯大學RGV分校理學院終身教授,主要研究方向有非線性分析, 動力系統, 分支和【混沌理論, 數值計算和生物數學等。分別於2015和2021年兩次獲得德↑克薩斯大學年度傑出成就獎獲。目前擔任國際知名學術期刊CNSNS的共同主編和EJDE的執行主編,同時擔任多個Elsevier和Springer國際學術雜誌的編委。

                主講內容:

                In this talk, we are concerned with wave solutions of a class of the KdV-Burgers-type systems by starting with Burgers-type equations, and then focus on the higher-order KdV-Burgers equation, a partial differential equation that occupies a prominent position in describing some physical processes in motion of turbulence and other unstable process systems. By means of the associated equivalence algebra, the Abel operator and the Lie symmetry, explicit-implicit wave solutions and asymptotic behaviors are presented.